Traffic-profile and machine learning based regional data center design and operation for 5G network

Published in Journal of Communications and Networks, 2019

Data center in the fifth generation (5G) network will serve as a facilitator to move the wireless communication industry from a proprietary hardware based approach to a more software oriented environment. Techniques such as Software defined networking (SDN) and network function virtualization (NFV) would be able to deploy network functionalities such as service and packet gateways as software. These virtual functionalities however would require computational power from data centers. Therefore, these data centers need to be properly placed and carefully designed based on the volume of traffic they are meant to serve. In this work, we first divide the city of Milan, Italy into different zones using Kmeans clustering algorithm. We then analyse the traffic profiles of these zones in the city using a network operator’s Open Big Data set. We identify the optimal placement of data centers as a facility location problem and propose the use of Weiszfeld’s algorithm to solve it. Furthermore, based on our analysis of traffic profiles in different zones, we heuristically determine the ideal dimension of the data center in each zone. Additionally, to aid operation and facilitate dynamic utilization of data center resources, we use the state of the art recurrent neural network models to predict the future traffic demands according to past demand profiles of each area.

Download paper here